Suppression of 9-cis-epoxycarotenoid dioxygenase, which encodes a key enzyme in abscisic acid biosynthesis, alters fruit texture in transgenic tomato.

نویسندگان

  • Liang Sun
  • Yufei Sun
  • Mei Zhang
  • Ling Wang
  • Jie Ren
  • Mengmeng Cui
  • Yanping Wang
  • Kai Ji
  • Ping Li
  • Qian Li
  • Pei Chen
  • Shengjie Dai
  • Chaorui Duan
  • Yan Wu
  • Ping Leng
چکیده

Cell wall catabolism during fruit ripening is under complex control and is key for fruit quality and shelf life. To examine the role of abscisic acid (ABA) in tomato (Solanum lycopersicum) fruit ripening, we suppressed SlNCED1, which encodes 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in the biosynthesis of ABA. To suppress SlNCED1 specifically in tomato fruits, and thus avoid the pleiotropic phenotypes associated with ABA deficiency, we used an RNA interference construct driven by the fruit-specific E8 promoter. ABA accumulation and SlNCED1 transcript levels in the transgenic fruit were down-regulated to between 20% and 50% of the levels measured in the control fruit. This significant reduction in NCED activity led to a down-regulation in the transcription of genes encoding major cell wall catabolic enzymes, specifically polygalacturonase (SlPG), pectin methyl esterase (SlPME), β-galactosidase precursor mRNA (SlTBG), xyloglucan endotransglycosylase (SlXET), endo-1,4-β-cellulose (SlCels), and expansin (SlExp). This resulted in an increased accumulation of pectin during ripening. In turn, this led to a significant extension of the shelf life to 15 to 29 d compared with a shelf life of only 7 d for the control fruit and an enhancement of fruit firmness at the mature stage by 30% to 45%. In conclusion, ABA affects cell wall catabolism during tomato fruit ripening via down-regulation of the expression of major catabolic genes (SlPG, SlPME, SlTBG, SlXET, SlCels, and SlExp).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fruit-specific RNAi-mediated suppression of SlNCED1 increases both lycopene and β-carotene contents in tomato fruit

Abscisic acid (ABA) plays important roles during tomato fruit ripening. To study the regulation of carotenoid biosynthesis by ABA, the SlNCED1 gene encoding 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in the ABA biosynthesis, was suppressed in tomato plants by transformation with an RNA interference (RNAi) construct driven by a fruit-specific E8 promoter. ABA accumulation and SlNCED1...

متن کامل

The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit

In order to understand more details about the role of abscisic acid (ABA) in fruit ripening and senescence, six 740 bp cDNAs (LeNCED1, LeNCED2, PpNCED1, VVNCED1, DKNCED1 and CMNCED1) which encode 9-cis-epoxycarotenoid dioxygenase (NCED) as a key enzyme in ABA biosynthesis, were cloned from fruits of tomato, peach, grape, persimmon and melon using an RT-PCR approach. A Blast homology search reve...

متن کامل

Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis.

Abscisic acid (ABA), a plant hormone, is involved in responses to environmental stresses such as drought and high salinity, and is required for stress tolerance. ABA is synthesized de novo in response to dehydration. 9-cis-epoxycarotenoid dioxygenase (NCED) is thought to be a key enzyme in ABA biosynthesis. Here we demonstrate that the expression of an NCED gene of Arabidopsis, AtNCED3, is indu...

متن کامل

A stress-inducible gene for 9-cis-epoxycarotenoid dioxygenase involved in abscisic acid biosynthesis under water stress in drought-tolerant cowpea.

Four cDNA clones named CPRD (cowpea responsive to dehydration) corresponding to genes that are responsive to dehydration were isolated using differential screening of a cDNA library prepared from 10-h dehydrated drought-tolerant cowpea (Vigna unguiculata) plants. One of the cDNA clones has a homology to 9-cis-epoxycarotenoid dioxygenase (named VuNCED1), which is supposed to be involved in absci...

متن کامل

SlNCED1 and SlCYP707A2: key genes involved in ABA metabolism during tomato fruit ripening

Abscisic acid (ABA) plays an important role in fruit development and ripening. Here, three NCED genes encoding 9-cis-epoxycarotenoid dioxygenase (NCED, a key enzyme in the ABA biosynthetic pathway) and three CYP707A genes encoding ABA 8'-hydroxylase (a key enzyme in the oxidative catabolism of ABA) were identified in tomato fruit by tobacco rattle virus-induced gene silencing (VIGS). Quantitati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 158 1  شماره 

صفحات  -

تاریخ انتشار 2012